

Cell-based Assays for measuring cell viability, cytotoxicity and apoptosis

Jaroslav Icha, PhD Application Specialist jaroslav.icha@eastport.cz + 420 725 312 797

Promega's Cell-based Assay Portfolio

...

Outline

- ✓ Cell Viability, Cytotoxicity, Apoptosis
- ✓ Energy / Lipid Metabolism
- ✓ Oxidative Stress

1.

Biomarkers of Cell Viability

Cell viability assays determine the <u>relative</u> amount of living cells within a population.

Metabolic Markers – Reduction Equivalents

CellTiter-Blue[®] Cell Viability Assay

CellTiter96® AQueous Proliferation Assay

CellTiter-Glo® Assay – Metabolic Marker ATP

- Measures ATP content in cell lysate
- Based on ATP-dependent luciferase reaction
- CellTiter-Glo[®] assay is lytic but there are live-cell alternatives

10 min

Luminescence

CellTiter-Glo® Assay – Metabolic Marker ATP

CellTiter-Glo® – Large dynamic range

Measure Luminescence

10 min

• With callibration curve allows precise quantification of ATP concentration in cells

CellTiter-Glo[®] – ATPases inhibited by assay components

CellTiter-Glo® 2.0– more stability and less pipetting

- Form of a single solution, will last 2 months in the fridge without significant loss of activity.
- However, long term storage best in -80°C.
- Can undergo five cycles of freeze-thaw without loss of activity.
- Same great performance as the classic CellTIter-Glo.

3D version of CellTiter-Glo

Optimized and validated for 3D - Spheroids & Organoids

Change in protocol very important

.

3D version of CellTiter-Glo

Optimized and validated for 3D – Spheroids & Organoids **Ultra-Glo**[®] Luciferase COOH HO O_{2} Mg² **S**PHEROID ATP Oxyluciferin Luciferin ATP ATP ATP ATP ΑΤΙ ATP ATP ATP ATP **INSUFFICIENT LYSIS SUFFICIENT LYSIS** Α. 12 CellTiter-Glo® 3D **HCT116** ■ ATPlite[™] 1Step 10 Luminescence (RLU × 10⁶) 200 µm 200 µm 8 10,000 Signal-to-Background Ratio 6 **ATPlite** CellTiter-Glo 3D 1,000 4 **CellTox-Green**[™] 100 0 3.000 6.000 0

10

1

CellTiter-Glo® 3D

Complete lysis was validated by staining with cell-impermeable fluorescent dye.

9,000

HCT116 Cells Seeded

MTT

alamarBlue®

CellTiter-Glo features and recommendations

 Ultra-Glo luciferase-proprietary recombinant luciferase (a different enzyme than in the luciferase reporters) is resistant to inhibition by small molecules or detergents-in lysis buffer, also is thermostable and gives stable glow type signal with half life of 3 hours. No competitor has such a good Firefly luciferase enzyme.

- Keep assay reagent in the dark. Never heat above laboratory temperature.
- Neither serum nor phenol red interferes with CellTiter-Glo. However prepare the ATP calibration curve in serum-free medium (residual ATPases).
- Always first equilibrate the plate with cells to lab temperature before adding the reagent.
 The cooling down of the cells has negligible effect on ATP content.
- Do not ever use overgrown cells or too many cells per well in the assay, their ATP content will be low or the signal half life will be short.
- Generally, some cell types can have much lower or higher ATP content, you need to test.

Real Time-Glo MT Cell Viability Assay

FACTS

- NanoLuc[®] luciferase is present in culture medium
- Cell-permeable prosubstrate "Pro-Furimazine" is intracellularly reduced to form Furimazine
- Furimazine diffuses from the cell and is rapidly consumed by NanoLuc[®] to produce light
- Supports kinetic measurements up to 72 h

Real Time-Glo™ Assay – Workflow and Data

True real time assay – Furimazine Does Not Accumulate

- Limited cell permeability
- Shows true "real time" situation

CellTox™ Green Cytotoxicity Assay

How to define cytotoxicity?

Main advantages

CellTox[™] Green Cytotoxicity Assay

- Kinetic measurement (72 hrs.) Ease of use (no touch assay) Flexible protocol options
- Multiplexing possible (e.g. with RealTime-Glo™ Cell Viability Assay)
- Downstream use of cells possible
- Suitable for 3D cultures
- Detection by plate reader, flow cytometry, microscopy possible
- GFP/FITC filter set comatible
- Cheap (1000x dilution)

Flexible protocol

The reagent can be added

- When cells are seeded
- When adding the treatment to cells
- At the end of experiment

Assay was designed for multiplexing

CellTox™ Green Cytotoxicity Assay

- Natural multiplexing with kinetic assays-CellTox Green can be present in the same well the whole time
- Will differentiate cytotoxic from cytostatic efects
- Can help estimating when to measure apoptosis

LDH-Glo[®] Assay – measures LDH leaking from cells

- Coupled enzymatic reaction to detect LDH
- Pro-Luciferin (Reductase Substrate) is being reduced
- Works well also for 3D cell cultures
- can be used to measure antibody-dependentcell mediated cytotoxicity (ADCC)

LDH-Glo[™] can be run as a kinetic assay

Measuring apoptosis

Measuring apoptosis–Caspase-Glo principle

purified enzyme measurements also possible

Luminometer

Measuring apoptosis – substrate for each Caspase

Superior sensitivity of luminiscence

The Caspase-Glo[®] 3/7 Assay can detect caspase 3/7 activation at lower levels than fluorescent methods.

- Luminescence measurements have minimal background (unlike fluorescence)
- The detection is very sensitive
- Broad range of concentrations, where the assay is linear
- Why does it matter?

Caspase-Glo recommendations

- We can also detect measurable caspase activity in the control "untreated" sample.
- Serum also has residual measurable caspase activity.
- You must include **two controls** in the experiment, cells without treatment and wells with medium only.
- It is good to adhere to SOPs for cell culture to reduce this source of variability. Poorly cultured cells also have a different response to your "treatment".
- You need to find out the appropriate time point for measuring caspase activity after adding your "treatment".
 Caspase activity is present **only transiently** in dying cells. "The treatment should not be long enough to affect the rate of cell proliferation / cause necrosis there it would be necessary to normalize with CellTiter-Glo, etc.

Caspase-Glo recommendations

- We can also detect measurable caspase activity in the control "untreated" sample.
- Serum also has residual measurable caspase activity.
- You must include **two controls** in the experiment, cells without treatment and wells with medium only.
- It is good to adhere to SOPs for cell culture to reduce this source of variability. Poorly cultured cells also have a different response to your "treatment".

1 - 1930

- You need to find out the appropriate time point for measuring caspase activity after adding your "treatment". Caspase activity is present **only transiently** in dying cells. "The treatment should not be long enough to affect the rate of cell proliferation / cause necrosis - there it would be necessary to normalize with CellTiter-Glo, etc.
- A suitable measurement interval is 30 min to 1 hour after the addition of Caspase-Glo, that luciferase and caspase activity reach steady state, the signal is stable for several hours and then slowly decreases. Waiting 1 hour helps to reduce the background from self-cleaved substrate.
- Let the plate / plates equilibrate to room temperature before adding the assay.
- In Caspase-Glo 8 and 9 the proteasomal activity can interfere with the assay, so the kits contain the proteasomal inhibitor MG-132.
- The assay is resistant to DMSO up to a high concentration of 5–10%

Caspase-Glo 3/7 3D

- The familiar essay, but with an enhanced lytic capacity.
- Ultra-Glo luciferase is modified so that its enzymatic activity is maintained even in harsher lytic conditions.
- Modified protocol for optimal results with 3D cultures, 30 to 60 s shaking.
- Thoroughly validated with spheroids created in ultralow attachment plates, by hanging drop method or those growing in matrigel.
- For cells in matrigel optimized "alternative protocol" must use Cell recovery solution (Corning), it provides higher RLUs.

Data normalization

Start the experiment with as similar number of cells in each well as possible, e.g. do transfection in bulk and seed the cells later.

- To control for the toxicity of tested compounds, two similar options are the best.
- Multiplex the assay with a cell viability assay (fluorescent) in the same plate.
- **Parallel measurement** in two plates. CellTiter-Glo as an ideal assay for normalization.
- Other methods, like normalizing to total protein-Bradford, BCA introduce unnecessary error.
- **ApoLive-Glo** combination of Caspase-Glo 3/7 and a fluorescent cell viability assay
- GF-AFC = measures live cell protease activity
- Fluorescent supplementary assays are also sold separately and can be combined in various ways.

Apotox-Glo – triplex assay

- Combination of Caspase-Glo 3/7 with two more fluorescent assays detecting live cell protease and dead cell protease activity.
- GF-AFC substrate = peptide-modified coumarin that begins to fluoresce (blue fluo) upon cleavage of the peptide inside the cell by live cell protease activity. It passes spontaneously across the cell membrane.
- bisAAF-R110 substrate = peptide-modified rhodamine, which is cleaved by protease activity released from necrotic cells and begins to fluoresce in red. It does not pass spontaneously across the cell membrane.

RealTime-Glo Annexin V assay – the kinetic advantage

- Based on the NanoBiT split luciferase technology. LgBiT=large subunit, SmBiT=small subunit of NanoLuc (NanoBiT).
- Contains: Annexin V-LgBiT fusion, Annexin V-SmBiT fusion and luminescence substrate. All three are added into the cell culture media.
- Annexin V proteins bind phosphatidylserin in the outer cytoplasmic membrane leaflet and bring LgBiT and SmBiT into proximity. They complement and form a functional NanoLuc luciferase.
- Typically combined with CellTox Green cytotoxicity measurement.

RealTime-Glo Annexin V assay – the kinetic advantage

- Significant savings of reagents if we need to determine apoptosis onset.
- We get a lot more information from each well
- Often the kinetic information is important in itself. Different drugs trigger apoptosis with different kinetics.

RealTime-Glo™ Apoptosis Assay

Multiple data points. One reagent addition. One assay plate.

Endpoint Assay Multiple data points. Multiple assay plates.

We are also an exclusive distributor of Lonza

- Standard media like DMEM, serum-free media
- Media supplements
- Primary cells mainly human, mouse, stem cells
- Specialized media to culture these cells
- Cell transfection Nucleofector
- Mycoplasma testing, endotoxin testing

Possibility of demo: Cytosmart OMNI, Lux2

Live cell imaging in 6 – 96 WP, culture flasks Microscope that fits into the cell culture incubator

One week free non-binding demo in your lab possible

Promega Webinar Library

https://www.promega.com/resources/webinars/

- 3D cell culture models and assays
- NanoLuc and HiBiT technologies
- Energy metabolism

Summary

- I showed you assays to measure Cell Viability/Cytotoxicity, apoptosis in standard cell culture and 3D, in end point as well as in kinetic format.
- Based on consuming ATP, chemically modified luciferase substrates requiring reduction or cleavage by protease, split NanoLuc (NanoBiT) luciferase technology.
- Many assays are applicable in cells as well as in vitro. They are usually designed as a complete experiment with positive and negative controls. Promega has strict QC.

Summary

- I showed you assays to measure Cell Viability/Cytotoxicity, apoptosis in standard cell culture and 3D, in end point as well as in kinetic format.
- Based on consuming ATP, chemically modified luciferase substrates requiring reduction or cleavage by protease, split NanoLuc (NanoBiT) luciferase technology.
- Many assays are applicable in cells as well as in vitro. They are usually designed as a complete experiment with positive and negative controls. Promega has strict QC.
- There are rich resources in the form of application notes, webinars, just ask for them
- We offer a complete solution for cell biology: cell culture media, transfection reagents and instruments, primary cells, cell culture microscopes and other small lab equipment...
- Demo possibilities for instruments and sample packages for reagents are available.